edgemdt_cl.pytorch

 1# -----------------------------------------------------------------------------
 2# Copyright 2024 Sony Semiconductor Israel, Inc. All rights reserved.
 3#
 4# Licensed under the Apache License, Version 2.0 (the "License");
 5# you may not use this file except in compliance with the License.
 6# You may obtain a copy of the License at
 7#
 8#     http://www.apache.org/licenses/LICENSE-2.0
 9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15# -----------------------------------------------------------------------------
16from typing import Optional, TYPE_CHECKING
17
18from edgemdt_cl.util.import_util import validate_installed_libraries
19from edgemdt_cl import required_libraries
20from edgemdt_cl.pytorch.custom_layer import CustomLayer
21
22if TYPE_CHECKING:
23    import onnxruntime as ort
24
25__all__ = [
26    'multiclass_nms', 'NMSResults', 'multiclass_nms_with_indices', 'NMSWithIndicesResults', 'FasterRCNNBoxDecode',
27    'load_custom_ops', 'MulticlassNMS', 'MulticlassNMSWithIndices', 'CustomLayer'
28]
29
30validate_installed_libraries(required_libraries['torch'])
31from edgemdt_cl.pytorch.nms import (    # noqa: E402
32    multiclass_nms, NMSResults, multiclass_nms_with_indices, NMSWithIndicesResults, MulticlassNMS,
33    MulticlassNMSWithIndices)
34from edgemdt_cl.pytorch.box_decode import FasterRCNNBoxDecode    # noqa: E402
35
36
37def load_custom_ops(ort_session_ops: Optional['ort.SessionOptions'] = None) -> 'ort.SessionOptions':
38    """
39    Registers the custom ops implementation for onnxruntime, and sets up the SessionOptions object for onnxruntime
40    session.
41
42    Args:
43        ort_session_ops: SessionOptions object to register the custom ops library on. If None, creates a new object.
44
45    Returns:
46        SessionOptions object with registered custom ops.
47
48    Example:
49        ```
50        import onnxruntime as ort
51        from edgemdt_cl.pytorch import load_custom_ops
52
53        so = load_custom_ops()
54        session = ort.InferenceSession(model_path, sess_options=so)
55        session.run(...)
56        ```
57        You can also pass your own SessionOptions object upon which to register the custom ops
58        ```
59        load_custom_ops(ort_session_options=so)
60        ```
61    """
62    validate_installed_libraries(required_libraries['torch_ort'])
63
64    # trigger onnxruntime op registration
65    from .nms import nms_ort
66    from .box_decode import box_decode_ort
67
68    from onnxruntime_extensions import get_library_path
69    from onnxruntime import SessionOptions
70    ort_session_ops = ort_session_ops or SessionOptions()
71    ort_session_ops.register_custom_ops_library(get_library_path())
72    return ort_session_ops
def multiclass_nms( boxes, scores, score_threshold: float, iou_threshold: float, max_detections: int) -> NMSResults:
54def multiclass_nms(boxes, scores, score_threshold: float, iou_threshold: float, max_detections: int) -> NMSResults:
55    """
56    Multi-class non-maximum suppression.
57    Detections are returned in descending order of their scores.
58    The output tensors always contain a fixed number of detections, as defined by 'max_detections'.
59    If fewer detections are selected, the output tensors are zero-padded up to 'max_detections'.
60
61    If you also require the input indices of the selected boxes, see `multiclass_nms_with_indices`.
62
63    Args:
64        boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates
65                        (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
66        scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
67        score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
68        iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
69        max_detections (int): The number of detections to return.
70
71    Returns:
72        'NMSResults' named tuple:
73        - boxes: The selected boxes with shape [batch, max_detections, 4].
74        - scores: The corresponding scores in descending order with shape [batch, max_detections].
75        - labels: The labels for each box with shape [batch, max_detections].
76        - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
77
78    Raises:
79        ValueError: If provided with invalid arguments or input tensors with unexpected or non-matching shapes.
80
81    Example:
82        ```
83        from edgemdt_cl.pytorch import multiclass_nms
84
85        # batch size=1, 1000 boxes, 50 classes
86        boxes = torch.rand(1, 1000, 4)
87        scores = torch.rand(1, 1000, 50)
88        res = multiclass_nms(boxes,
89                             scores,
90                             score_threshold=0.1,
91                             iou_threshold=0.6,
92                             max_detections=300)
93        # res.boxes, res.scores, res.labels, res.n_valid
94        ```
95    """
96    return NMSResults(*torch.ops.edgemdt.multiclass_nms(boxes, scores, score_threshold, iou_threshold, max_detections))

Multi-class non-maximum suppression. Detections are returned in descending order of their scores. The output tensors always contain a fixed number of detections, as defined by 'max_detections'. If fewer detections are selected, the output tensors are zero-padded up to 'max_detections'.

If you also require the input indices of the selected boxes, see multiclass_nms_with_indices.

Arguments:
  • boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
  • scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
  • score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
  • iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
  • max_detections (int): The number of detections to return.
Returns:

'NMSResults' named tuple:

  • boxes: The selected boxes with shape [batch, max_detections, 4].
  • scores: The corresponding scores in descending order with shape [batch, max_detections].
  • labels: The labels for each box with shape [batch, max_detections].
  • n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
Raises:
  • ValueError: If provided with invalid arguments or input tensors with unexpected or non-matching shapes.
Example:
from edgemdt_cl.pytorch import multiclass_nms

# batch size=1, 1000 boxes, 50 classes
boxes = torch.rand(1, 1000, 4)
scores = torch.rand(1, 1000, 50)
res = multiclass_nms(boxes,
                     scores,
                     score_threshold=0.1,
                     iou_threshold=0.6,
                     max_detections=300)
# res.boxes, res.scores, res.labels, res.n_valid
class NMSResults(typing.NamedTuple):
32class NMSResults(NamedTuple):
33    """ Container for non-maximum suppression results """
34    boxes: Tensor
35    scores: Tensor
36    labels: Tensor
37    n_valid: Tensor
38
39    # Note: convenience methods below are replicated in each Results container, since NamedTuple supports neither adding
40    # new fields in derived classes nor multiple inheritance, and we want it to behave like a tuple, so no dataclasses.
41    def detach(self) -> 'NMSResults':
42        """ Detach all tensors and return a new object """
43        return self.apply(lambda t: t.detach())
44
45    def cpu(self) -> 'NMSResults':
46        """ Move all tensors to cpu and return a new object """
47        return self.apply(lambda t: t.cpu())
48
49    def apply(self, f: Callable[[Tensor], Tensor]) -> 'NMSResults':
50        """ Apply any function to all tensors and return a new object """
51        return self.__class__(*[f(t) for t in self])

Container for non-maximum suppression results

NMSResults( boxes: torch.Tensor, scores: torch.Tensor, labels: torch.Tensor, n_valid: torch.Tensor)

Create new instance of NMSResults(boxes, scores, labels, n_valid)

boxes: torch.Tensor

Alias for field number 0

scores: torch.Tensor

Alias for field number 1

labels: torch.Tensor

Alias for field number 2

n_valid: torch.Tensor

Alias for field number 3

def detach(self) -> NMSResults:
41    def detach(self) -> 'NMSResults':
42        """ Detach all tensors and return a new object """
43        return self.apply(lambda t: t.detach())

Detach all tensors and return a new object

def cpu(self) -> NMSResults:
45    def cpu(self) -> 'NMSResults':
46        """ Move all tensors to cpu and return a new object """
47        return self.apply(lambda t: t.cpu())

Move all tensors to cpu and return a new object

def apply( self, f: Callable[[torch.Tensor], torch.Tensor]) -> NMSResults:
49    def apply(self, f: Callable[[Tensor], Tensor]) -> 'NMSResults':
50        """ Apply any function to all tensors and return a new object """
51        return self.__class__(*[f(t) for t in self])

Apply any function to all tensors and return a new object

def multiclass_nms_with_indices( boxes, scores, score_threshold: float, iou_threshold: float, max_detections: int) -> NMSWithIndicesResults:
54def multiclass_nms_with_indices(boxes, scores, score_threshold: float, iou_threshold: float,
55                                max_detections: int) -> NMSWithIndicesResults:
56    """
57    Multi-class non-maximum suppression with indices.
58    Detections are returned in descending order of their scores.
59    The output tensors always contain a fixed number of detections, as defined by 'max_detections'.
60    If fewer detections are selected, the output tensors are zero-padded up to 'max_detections'.
61
62    This operator is identical to `multiclass_nms` except that is also outputs the input indices of the selected boxes.
63
64    Args:
65        boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates
66                        (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
67        scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
68        score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
69        iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
70        max_detections (int): The number of detections to return.
71
72    Returns:
73        'NMSWithIndicesResults' named tuple:
74        - boxes: The selected boxes with shape [batch, max_detections, 4].
75        - scores: The corresponding scores in descending order with shape [batch, max_detections].
76        - labels: The labels for each box with shape [batch, max_detections].
77        - indices: Indices of the input boxes that have been selected.
78        - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
79
80    Raises:
81        ValueError: If provided with invalid arguments or input tensors with unexpected or non-matching shapes.
82
83    Example:
84        ```
85        from edgemdt_cl.pytorch import multiclass_nms_with_indices
86
87        # batch size=1, 1000 boxes, 50 classes
88        boxes = torch.rand(1, 1000, 4)
89        scores = torch.rand(1, 1000, 50)
90        res = multiclass_nms_with_indices(boxes,
91                                          scores,
92                                          score_threshold=0.1,
93                                          iou_threshold=0.6,
94                                          max_detections=300)
95        # res.boxes, res.scores, res.labels, res.indices, res.n_valid
96        ```
97    """
98    return NMSWithIndicesResults(
99        *torch.ops.edgemdt.multiclass_nms_with_indices(boxes, scores, score_threshold, iou_threshold, max_detections))

Multi-class non-maximum suppression with indices. Detections are returned in descending order of their scores. The output tensors always contain a fixed number of detections, as defined by 'max_detections'. If fewer detections are selected, the output tensors are zero-padded up to 'max_detections'.

This operator is identical to multiclass_nms except that is also outputs the input indices of the selected boxes.

Arguments:
  • boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
  • scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
  • score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
  • iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
  • max_detections (int): The number of detections to return.
Returns:

'NMSWithIndicesResults' named tuple:

  • boxes: The selected boxes with shape [batch, max_detections, 4].
  • scores: The corresponding scores in descending order with shape [batch, max_detections].
  • labels: The labels for each box with shape [batch, max_detections].
  • indices: Indices of the input boxes that have been selected.
  • n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
Raises:
  • ValueError: If provided with invalid arguments or input tensors with unexpected or non-matching shapes.
Example:
from edgemdt_cl.pytorch import multiclass_nms_with_indices

# batch size=1, 1000 boxes, 50 classes
boxes = torch.rand(1, 1000, 4)
scores = torch.rand(1, 1000, 50)
res = multiclass_nms_with_indices(boxes,
                                  scores,
                                  score_threshold=0.1,
                                  iou_threshold=0.6,
                                  max_detections=300)
# res.boxes, res.scores, res.labels, res.indices, res.n_valid
class NMSWithIndicesResults(typing.NamedTuple):
31class NMSWithIndicesResults(NamedTuple):
32    """ Container for non-maximum suppression with indices results """
33    boxes: Tensor
34    scores: Tensor
35    labels: Tensor
36    indices: Tensor
37    n_valid: Tensor
38
39    # Note: convenience methods below are replicated in each Results container, since NamedTuple supports neither adding
40    # new fields in derived classes nor multiple inheritance, and we want it to behave like a tuple, so no dataclasses.
41    def detach(self) -> 'NMSWithIndicesResults':
42        """ Detach all tensors and return a new object """
43        return self.apply(lambda t: t.detach())
44
45    def cpu(self) -> 'NMSWithIndicesResults':
46        """ Move all tensors to cpu and return a new object """
47        return self.apply(lambda t: t.cpu())
48
49    def apply(self, f: Callable[[Tensor], Tensor]) -> 'NMSWithIndicesResults':
50        """ Apply any function to all tensors and return a new object """
51        return self.__class__(*[f(t) for t in self])

Container for non-maximum suppression with indices results

NMSWithIndicesResults( boxes: torch.Tensor, scores: torch.Tensor, labels: torch.Tensor, indices: torch.Tensor, n_valid: torch.Tensor)

Create new instance of NMSWithIndicesResults(boxes, scores, labels, indices, n_valid)

boxes: torch.Tensor

Alias for field number 0

scores: torch.Tensor

Alias for field number 1

labels: torch.Tensor

Alias for field number 2

indices: torch.Tensor

Alias for field number 3

n_valid: torch.Tensor

Alias for field number 4

def detach(self) -> NMSWithIndicesResults:
41    def detach(self) -> 'NMSWithIndicesResults':
42        """ Detach all tensors and return a new object """
43        return self.apply(lambda t: t.detach())

Detach all tensors and return a new object

def cpu(self) -> NMSWithIndicesResults:
45    def cpu(self) -> 'NMSWithIndicesResults':
46        """ Move all tensors to cpu and return a new object """
47        return self.apply(lambda t: t.cpu())

Move all tensors to cpu and return a new object

def apply( self, f: Callable[[torch.Tensor], torch.Tensor]) -> NMSWithIndicesResults:
49    def apply(self, f: Callable[[Tensor], Tensor]) -> 'NMSWithIndicesResults':
50        """ Apply any function to all tensors and return a new object """
51        return self.__class__(*[f(t) for t in self])

Apply any function to all tensors and return a new object

class FasterRCNNBoxDecode(torch.nn.modules.module.Module):
31class FasterRCNNBoxDecode(nn.Module):
32    """
33    Box decoding as per Faster R-CNN <https://arxiv.org/abs/1506.01497>.
34
35    Args:
36        anchors: Anchors with a shape of (n_boxes, 4) in corner coordinates (y_min, x_min, y_max, x_max).
37        scale_factors: Scaling factors in the format (y, x, height, width).
38        clip_window: Clipping window in the format (y_min, x_min, y_max, x_max).
39
40    Inputs:
41        **rel_codes** (Tensor): Relative codes (encoded offsets) with a shape of (batch, n_boxes, 4) in centroid
42                                coordinates (y_center, x_center, h, w).
43
44    Returns:
45        Decoded boxes with a shape of (batch, n_boxes, 4) in corner coordinates (y_min, x_min, y_max, x_max).
46
47    Raises:
48        ValueError: If provided with invalid arguments or an input tensor with unexpected shape
49
50    Example:
51        ```
52        from edgemdt_cl.pytorch import FasterRCNNBoxDecode
53
54        box_decode = FasterRCNNBoxDecode(anchors,
55                                         scale_factors=(10, 10, 5, 5),
56                                         clip_window=(0, 0, 1, 1))
57        decoded_boxes = box_decode(rel_codes)
58        ```
59    """
60
61    def __init__(self, anchors: torch.Tensor, scale_factors: Sequence[Union[float, int]],
62                 clip_window: Sequence[Union[float, int]]):
63        super().__init__()
64        warnings.warn("FasterRCNNBoxDecode is deprecated and will be removed in a future version.", DeprecationWarning)
65
66        if not (len(anchors.shape) == 2 and anchors.shape[-1] == 4):
67            raise ValueError(f'Invalid anchors shape {anchors.shape}. Expected shape (n_boxes, 4).')
68        self.register_buffer('anchors', anchors)
69
70        if len(scale_factors) != 4:
71            raise ValueError(f'Invalid scale factors {scale_factors}. Expected 4 values for (y, x, height, width).')
72        self.register_buffer('scale_factors', torch.tensor(scale_factors, dtype=torch.float32, device=anchors.device))
73
74        if len(clip_window) != 4:
75            raise ValueError(f'Invalid clip window {clip_window}. Expected 4 values for (y_min, x_min, y_max, x_max).')
76        self.register_buffer('clip_window', torch.tensor(clip_window, dtype=torch.float32, device=anchors.device))
77
78    def forward(self, rel_codes: torch.Tensor) -> torch.Tensor:
79        return torch.ops.edgemdt.faster_rcnn_box_decode(rel_codes, self.anchors, self.scale_factors, self.clip_window)

Box decoding as per Faster R-CNN https://arxiv.org/abs/1506.01497.

Arguments:
  • anchors: Anchors with a shape of (n_boxes, 4) in corner coordinates (y_min, x_min, y_max, x_max).
  • scale_factors: Scaling factors in the format (y, x, height, width).
  • clip_window: Clipping window in the format (y_min, x_min, y_max, x_max).
Inputs:

rel_codes (Tensor): Relative codes (encoded offsets) with a shape of (batch, n_boxes, 4) in centroid coordinates (y_center, x_center, h, w).

Returns:

Decoded boxes with a shape of (batch, n_boxes, 4) in corner coordinates (y_min, x_min, y_max, x_max).

Raises:
  • ValueError: If provided with invalid arguments or an input tensor with unexpected shape
Example:
from edgemdt_cl.pytorch import FasterRCNNBoxDecode

box_decode = FasterRCNNBoxDecode(anchors,
                                 scale_factors=(10, 10, 5, 5),
                                 clip_window=(0, 0, 1, 1))
decoded_boxes = box_decode(rel_codes)
FasterRCNNBoxDecode( anchors: torch.Tensor, scale_factors: Sequence[Union[float, int]], clip_window: Sequence[Union[float, int]])
61    def __init__(self, anchors: torch.Tensor, scale_factors: Sequence[Union[float, int]],
62                 clip_window: Sequence[Union[float, int]]):
63        super().__init__()
64        warnings.warn("FasterRCNNBoxDecode is deprecated and will be removed in a future version.", DeprecationWarning)
65
66        if not (len(anchors.shape) == 2 and anchors.shape[-1] == 4):
67            raise ValueError(f'Invalid anchors shape {anchors.shape}. Expected shape (n_boxes, 4).')
68        self.register_buffer('anchors', anchors)
69
70        if len(scale_factors) != 4:
71            raise ValueError(f'Invalid scale factors {scale_factors}. Expected 4 values for (y, x, height, width).')
72        self.register_buffer('scale_factors', torch.tensor(scale_factors, dtype=torch.float32, device=anchors.device))
73
74        if len(clip_window) != 4:
75            raise ValueError(f'Invalid clip window {clip_window}. Expected 4 values for (y_min, x_min, y_max, x_max).')
76        self.register_buffer('clip_window', torch.tensor(clip_window, dtype=torch.float32, device=anchors.device))

Initialize internal Module state, shared by both nn.Module and ScriptModule.

def forward(self, rel_codes: torch.Tensor) -> torch.Tensor:
78    def forward(self, rel_codes: torch.Tensor) -> torch.Tensor:
79        return torch.ops.edgemdt.faster_rcnn_box_decode(rel_codes, self.anchors, self.scale_factors, self.clip_window)

Define the computation performed at every call.

Should be overridden by all subclasses.

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

def load_custom_ops( ort_session_ops: Optional[onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions] = None) -> onnxruntime.capi.onnxruntime_pybind11_state.SessionOptions:
38def load_custom_ops(ort_session_ops: Optional['ort.SessionOptions'] = None) -> 'ort.SessionOptions':
39    """
40    Registers the custom ops implementation for onnxruntime, and sets up the SessionOptions object for onnxruntime
41    session.
42
43    Args:
44        ort_session_ops: SessionOptions object to register the custom ops library on. If None, creates a new object.
45
46    Returns:
47        SessionOptions object with registered custom ops.
48
49    Example:
50        ```
51        import onnxruntime as ort
52        from edgemdt_cl.pytorch import load_custom_ops
53
54        so = load_custom_ops()
55        session = ort.InferenceSession(model_path, sess_options=so)
56        session.run(...)
57        ```
58        You can also pass your own SessionOptions object upon which to register the custom ops
59        ```
60        load_custom_ops(ort_session_options=so)
61        ```
62    """
63    validate_installed_libraries(required_libraries['torch_ort'])
64
65    # trigger onnxruntime op registration
66    from .nms import nms_ort
67    from .box_decode import box_decode_ort
68
69    from onnxruntime_extensions import get_library_path
70    from onnxruntime import SessionOptions
71    ort_session_ops = ort_session_ops or SessionOptions()
72    ort_session_ops.register_custom_ops_library(get_library_path())
73    return ort_session_ops

Registers the custom ops implementation for onnxruntime, and sets up the SessionOptions object for onnxruntime session.

Arguments:
  • ort_session_ops: SessionOptions object to register the custom ops library on. If None, creates a new object.
Returns:

SessionOptions object with registered custom ops.

Example:
import onnxruntime as ort
from edgemdt_cl.pytorch import load_custom_ops

so = load_custom_ops()
session = ort.InferenceSession(model_path, sess_options=so)
session.run(...)

You can also pass your own SessionOptions object upon which to register the custom ops

load_custom_ops(ort_session_options=so)
class MulticlassNMS(edgemdt_cl.pytorch.CustomLayer):
 99class MulticlassNMS(CustomLayer):
100    """
101    A torch.nn.Module for multiclass NMS. See multiclass_nms for additional information.
102
103    Usage example:
104        batch size=1, 1000 boxes, 50 classes
105        boxes = torch.rand(1, 1000, 4)
106        scores = torch.rand(1, 1000, 50)
107        nms = MulticlassNMS(score_threshold=0.1,
108                            iou_threshold=0.6
109                            max_detections=300)
110        res = nms(boxes, scores)
111    """
112
113    def __init__(self, score_threshold: float, iou_threshold: float, max_detections: int):
114        """
115        Args:
116            score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
117            iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
118            max_detections (int): The number of detections to return.
119        """
120        super(MulticlassNMS, self).__init__()
121        self.score_threshold = score_threshold
122        self.iou_threshold = iou_threshold
123        self.max_detections = max_detections
124
125    def forward(self, boxes: torch.Tensor, scores: torch.Tensor):
126        """
127        Args:
128            boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates
129                            (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
130            scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
131
132        Returns: 'NMSResults' named tuple:
133            - boxes: The selected boxes with shape [batch, max_detections, 4].
134            - scores: The corresponding scores in descending order with shape [batch, max_detections].
135            - labels: The labels for each box with shape [batch, max_detections].
136            - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
137        """
138        nms = multiclass_nms(boxes=boxes,
139                             scores=scores,
140                             score_threshold=self.score_threshold,
141                             iou_threshold=self.iou_threshold,
142                             max_detections=self.max_detections)
143        return nms

A torch.nn.Module for multiclass NMS. See multiclass_nms for additional information.

Usage example:

batch size=1, 1000 boxes, 50 classes boxes = torch.rand(1, 1000, 4) scores = torch.rand(1, 1000, 50) nms = MulticlassNMS(score_threshold=0.1, iou_threshold=0.6 max_detections=300) res = nms(boxes, scores)

MulticlassNMS(score_threshold: float, iou_threshold: float, max_detections: int)
113    def __init__(self, score_threshold: float, iou_threshold: float, max_detections: int):
114        """
115        Args:
116            score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
117            iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
118            max_detections (int): The number of detections to return.
119        """
120        super(MulticlassNMS, self).__init__()
121        self.score_threshold = score_threshold
122        self.iou_threshold = iou_threshold
123        self.max_detections = max_detections
Arguments:
  • score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
  • iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
  • max_detections (int): The number of detections to return.
def forward(self, boxes: torch.Tensor, scores: torch.Tensor):
125    def forward(self, boxes: torch.Tensor, scores: torch.Tensor):
126        """
127        Args:
128            boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates
129                            (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
130            scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
131
132        Returns: 'NMSResults' named tuple:
133            - boxes: The selected boxes with shape [batch, max_detections, 4].
134            - scores: The corresponding scores in descending order with shape [batch, max_detections].
135            - labels: The labels for each box with shape [batch, max_detections].
136            - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
137        """
138        nms = multiclass_nms(boxes=boxes,
139                             scores=scores,
140                             score_threshold=self.score_threshold,
141                             iou_threshold=self.iou_threshold,
142                             max_detections=self.max_detections)
143        return nms
Arguments:
  • boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
  • scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].

Returns: 'NMSResults' named tuple: - boxes: The selected boxes with shape [batch, max_detections, 4]. - scores: The corresponding scores in descending order with shape [batch, max_detections]. - labels: The labels for each box with shape [batch, max_detections]. - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]

class MulticlassNMSWithIndices(edgemdt_cl.pytorch.CustomLayer):
102class MulticlassNMSWithIndices(CustomLayer):
103    """
104    A torch.nn.Module for multiclass NMS with indices. See multiclass_nms_with_indices for additional information.
105
106    Usage example:
107        batch size=1, 1000 boxes, 50 classes
108        boxes = torch.rand(1, 1000, 4)
109        scores = torch.rand(1, 1000, 50)
110        nms = MulticlassNMSWithIndices(score_threshold=0.1,
111                                       iou_threshold=0.6
112                                       max_detections=300)
113        res = nms(boxes, scores)
114    """
115
116    def __init__(self, score_threshold: float, iou_threshold: float, max_detections: int):
117        """
118        Args:
119            score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
120            iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
121            max_detections (int): The number of detections to return.
122        """
123        super(MulticlassNMSWithIndices, self).__init__()
124        self.score_threshold = score_threshold
125        self.iou_threshold = iou_threshold
126        self.max_detections = max_detections
127
128    def forward(self, boxes: torch.Tensor, scores: torch.Tensor):
129        """
130        Args:
131            boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates
132                            (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
133            scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
134
135        Returns: 'NMSWithIndicesResults' named tuple:
136            - boxes: The selected boxes with shape [batch, max_detections, 4].
137            - scores: The corresponding scores in descending order with shape [batch, max_detections].
138            - labels: The labels for each box with shape [batch, max_detections].
139            - indices: Indices of the input boxes that have been selected.
140            - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
141        """
142        nms = multiclass_nms_with_indices(boxes=boxes,
143                                          scores=scores,
144                                          score_threshold=self.score_threshold,
145                                          iou_threshold=self.iou_threshold,
146                                          max_detections=self.max_detections)
147        return nms

A torch.nn.Module for multiclass NMS with indices. See multiclass_nms_with_indices for additional information.

Usage example:

batch size=1, 1000 boxes, 50 classes boxes = torch.rand(1, 1000, 4) scores = torch.rand(1, 1000, 50) nms = MulticlassNMSWithIndices(score_threshold=0.1, iou_threshold=0.6 max_detections=300) res = nms(boxes, scores)

MulticlassNMSWithIndices(score_threshold: float, iou_threshold: float, max_detections: int)
116    def __init__(self, score_threshold: float, iou_threshold: float, max_detections: int):
117        """
118        Args:
119            score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
120            iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
121            max_detections (int): The number of detections to return.
122        """
123        super(MulticlassNMSWithIndices, self).__init__()
124        self.score_threshold = score_threshold
125        self.iou_threshold = iou_threshold
126        self.max_detections = max_detections
Arguments:
  • score_threshold (float): The score threshold. Candidates with scores below the threshold are discarded.
  • iou_threshold (float): The Intersection Over Union (IOU) threshold for boxes overlap.
  • max_detections (int): The number of detections to return.
def forward(self, boxes: torch.Tensor, scores: torch.Tensor):
128    def forward(self, boxes: torch.Tensor, scores: torch.Tensor):
129        """
130        Args:
131            boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates
132                            (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
133            scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].
134
135        Returns: 'NMSWithIndicesResults' named tuple:
136            - boxes: The selected boxes with shape [batch, max_detections, 4].
137            - scores: The corresponding scores in descending order with shape [batch, max_detections].
138            - labels: The labels for each box with shape [batch, max_detections].
139            - indices: Indices of the input boxes that have been selected.
140            - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]
141        """
142        nms = multiclass_nms_with_indices(boxes=boxes,
143                                          scores=scores,
144                                          score_threshold=self.score_threshold,
145                                          iou_threshold=self.iou_threshold,
146                                          max_detections=self.max_detections)
147        return nms
Arguments:
  • boxes (Tensor): Input boxes with shape [batch, n_boxes, 4], specified in corner coordinates (x_min, y_min, x_max, y_max). Agnostic to the x-y axes order.
  • scores (Tensor): Input scores with shape [batch, n_boxes, n_classes].

Returns: 'NMSWithIndicesResults' named tuple: - boxes: The selected boxes with shape [batch, max_detections, 4]. - scores: The corresponding scores in descending order with shape [batch, max_detections]. - labels: The labels for each box with shape [batch, max_detections]. - indices: Indices of the input boxes that have been selected. - n_valid: The number of valid detections out of 'max_detections' with shape [batch, 1]

class CustomLayer(torch.nn.modules.module.Module, abc.ABC):
22class CustomLayer(torch.nn.Module, ABC):
23    pass

Base class for all neural network modules.

Your models should also subclass this class.

Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::

import torch.nn as nn
import torch.nn.functional as F

class Model(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.conv1 = nn.Conv2d(1, 20, 5)
        self.conv2 = nn.Conv2d(20, 20, 5)

    def forward(self, x):
        x = F.relu(self.conv1(x))
        return F.relu(self.conv2(x))

Submodules assigned in this way will be registered, and will have their parameters converted too when you call to(), etc.

As per the example above, an __init__() call to the parent class must be made before assignment on the child.

:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool